Write a Blog >>
Sun 20 - Fri 25 October 2019 Athens, Greece
Wed 23 Oct 2019 17:07 - 17:30 at Attica - Formalization Chair(s): Eric Koskinen

In 2016, the first quantum processors have been made available to the general public. The possibility of programming an actual quantum device has elicited much enthusiasm. Yet, such possibility also brought challenges. One challenge is the so called Qubit Allocation problem: the mapping of a virtual quantum circuit into an actual quantum architecture. There exist solutions to this problem; however, in our opinion, they fail to capitalize on decades of improvements on graph theory. In contrast, this paper shows how to model qubit allocation as the combination of Subgraph Isomorphism and Token Swapping. This idea has been made possible by the publication of an approximative solution to the latter problem in 2016. We have compared our algorithm against five other qubit allocators, all independently designed in the last two years, including the winner of the IBM Challenge. Our technique outperforms these state-of-the-art approaches in terms of the quality of the solutions that it finds and the amount of memory that it uses in ``Tokyo", a quantum architecture with 20 qubits, while showing practical runtime.

This program is tentative and subject to change.

Wed 23 Oct

16:00 - 17:30: OOPSLA - Formalization at Attica
Chair(s): Eric KoskinenStevens Institute of Technology
splash-2019-oopsla16:00 - 16:22
Abhinav JangdaUniversity of Massachusetts Amherst, Donald PinckneyUniversity of Massachusetts Amherst, Yuriy BrunUniversity of Massachusetts Amherst, Arjun GuhaUniversity of Massachusetts, Amherst
Link to publication DOI Pre-print
splash-2019-oopsla16:22 - 16:45
John BenderUniversity of California, Los Angeles, Jens PalsbergUniversity of California, Los Angeles
splash-2019-oopsla16:45 - 17:07
Marianna RapoportUniversity of Waterloo, Ondřej LhotákUniversity of Waterloo
splash-2019-oopsla17:07 - 17:30