We propose design guidelines for a probabilistic programming facility suitable for deployment as a part of a production software system. As a reference implementation, we introduce Infergo, a probabilistic programming facility for Go, a modern programming language of choice for server-side software development. We argue that a similar probabilistic programming facility can be added to most modern general-purpose programming languages.
Probabilistic programming enables automatic tuning of program parameters and algorithmic decision making through probabilistic inference based on the data. To facilitate addition of probabilistic programming capabilities to other programming languages, we share implementation choices and techniques employed in development of Infergo. We illustrate applicability of Infergo to various use cases on case studies, and evaluate Infergo’s performance on several benchmarks, comparing Infergo to dedicated inference-centric probabilistic programming frameworks.
Wed 23 OctDisplayed time zone: Beirut change
11:00 - 12:30 | |||
11:00 30mTalk | Deployable Probabilistic Programming Onward! Papers David Tolpin PUB+ | ||
11:30 30mTalk | An Approach for Persistent Time-Varying Values Onward! Papers | ||
12:00 30mTalk | CallƐ: An Effect System for Method Calls Onward! Papers Isaac Oscar Gariano Victoria University of Wellington, James Noble Victoria University of Wellington, Marco Servetto Victoria University Wellington, New Zealand |