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Abstract— Due to new peer-review programs, researchers in
certain fields can now receive badges on their papers that
reward them for writing functional and reusable research code.
These badges in turn make their research more attractive for
others to cite and build upon. Unfortunately, some submissions
to these new programs do not pass the lowest bar, and
many submissions are difficult for reviewers to simply setup
and test. To understand how to improve submissions and
how to help researchers gain badges, we studied the artifact
evaluation process of OOPSLA 2019, an ACM conference on the
analysis and design of computer programs. Based on reviewer
experiences, we highlight best practices and we discuss whether
guidelines, tools, or larger cooperative efforts are required to
achieve them. To conclude, we present ongoing and future work
that helps researchers share and use research code.

1. INTRODUCTION

Many researchers today are frustrated with how difficult
it is to reproduce published results [1], [2]. Despite the
widespread use of software to conduct research [3], rarely
can research software be found, run, and reused, making
important research results hard to trust and build upon [4].
In an effort to address this, the Association of Computing
Machinery (ACM) created an initiative to award badges
to research papers backed by functional, reusable research
code that reproduces results [5]. These badges make research
papers stand out as more transparent and credible, potentially
gaining authors more citations from their peers.

In this report, we present a case study on a subset
of the research software artifacts submitted to OOPSLA
2019, an ACM conference on the analysis and design of
computer programs [6]. To better understand how to help
researchers submit quality artifacts and to better understand
how to improve the review process, we collected data on
submitted artifacts, on documentation, and on peer-reviewer
experiences.

This report is organized as follows: Part 2 describes the
artifacts we studied, the methods we used, and the categories
of data we present in Parts 3-4. Parts 3-4 presents the
data we collected to answer the questions “What makes an
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artifact hard to test?” and “What makes an artifact easy to
test?”. Part 5 summarizes and discusses the data in Parts
3-4, and finally, Part 6 presents ongoing and future work.
Henceforth, the terminology and acronyms below will be
used interchangeably through this report:

Term Description

artifact research software artifact
reviewers members of an artifact evaluation committee
image contains the files of an artifact
archive a compressed directory
VM short for “Virtual Machine”
container short for “Linux container”
open source freely readable code
code software

2. METHODOLOGY

To collect data, we participated as a member of the artifact
evaluation committee for the OOPSLA 2019 conference [6].
Since OOPSLA accepts research on the analysis and design
of computer programs, naturally in many cases research
artifacts were in and of themselves the research results,
serving as examples of the designs described in papers.

Of the 44 artifacts reviewed by the committee, 28 (64%)
opted into being observed by us for the purpose of this
study. For each opt-in, we were able to view a draft of a
research paper that explained the research results, an artifact,
a “Getting Started” guide written by the artifact’s authors,
and comments made by other reviewers on topics ranging
from setting up artifacts, testing functionality, interpreting
documentation, to the reusability of code.

As a member of the committee, we also tested 3 artifacts
in-depth, meaning that we attempted to setup and execute
these artifacts, and we checked whether they produced results
that could be compared with those reported in their papers.
We did not evaluate the correctness of the results because
we lacked sufficient domain expertise.

While the committee evaluated artifacts along a number
of dimensions [5], in this report we only present data on
the review of functionality. Our focus is due to the fact that
functionality is a necessary precondition of other dimensions
like code reusability and reproducible results. Furthermore,
there were enough functional issues with artifacts to warrant
a closer look: for 24/28 artifacts we observed, reviewers
faced issues setting up and executing them.

While the number of artifacts we reviewed is low, this



report is still valuable, since many of the issues we observed
could lead one to believe that an artifact doesn’t work at all.
And the lost value of even a single artifact matters: the weeks
to months required to reproduce its behavior is evidence
enough. We therefore encourage the reader not to view the
data we present as evidence of the relative importance of an
issue. An issue that happens only once may be the very thing
that makes an artifact impossible to use. Instead, view the
data in the following sections as a detailed picture of how
researchers and reviewers need more help.

We analyzed the data as follows: First, we collected and
separated all of the negative and positive comments made
by the reviewers of the 28 artifacts. We then grouped similar
comments into “types”, and we grouped those types of com-
ments into high-level categories. Below are the categories
that resulted from this process. Color-coding is used consis-
tently to refer to these categories throughout this report.

• Environment Related to the operating system, soft-
ware dependencies, and physical resources
needed by an artifact

• Format Related to how an artifact is packaged and
distributed, for example, as a VM, container,
archive, or any other format

• Content Related to an artifact’s code, documentation,
helper scripts, and tests

• Execution Related to compiling or executing an artifact

In Parts 3-4, we present a combination of quantitative
data (the number of artifacts that reviewers commented on
negatively or positively) and qualitative data (details from
reviewer experiences). This combination of data makes it
possible to spot trends and nuance.

3. WHAT MAKES AN ARTIFACT HARD TO TEST?

Table 1 shows the types and frequencies of negative com-
ments made by reviewers while setting up and executing ar-
tifacts. The types of comments are ranked by their frequency
in reference to artifacts below:

Artifacts with at least one
type of comment below

24/28

• Long running tests 15/28
• Not enough resources 10/28
• Problems with docs 10/28
• Issues compiling or running 8/28
• Issues with VM or container 5/28
• Ignored errors 5/28
• Issues with software dependencies 4/28
• Works in limited environments 3/28
• Errors in scripts 2/28
• Too complicated 2/28
• Downloads during execution 2/28

Grid 1 provides more context to Table 1 with details from
reviewer experiences. Of note are major frustrations like
trying and failing repeatedly to find the right software
dependencies, and needing to run experiments for 8 times
longer than expected.

4. WHAT MAKES AN ARTIFACT EASY TO TEST?

Table 2 shows the types and frequencies of positive com-
ments, similar to Table 1. The types of comments are ranked
by their frequency in reference to artifacts below:

Artifacts with at least one
type of comment below

7/28

• Self-contained 4/28
• Comprehensive documentation 4/28
• Lightweight 1/28

The fewer number of topics (compared to Part 3) is due
to the fact that there were far fewer positive comments than
negative ones. Understandbly, reviewers may have been more
motivated to comment when frustrated, or out of need.

Further, while it was not easy to objectively assess “com-
prehensive documentation” or how “lightweight” an artifact
appeared to be, it was possible to objectively count how
many artifacts were self-contained in a VM or container.
Encouragingly, the vast majority (86%), were self-contained
in one of these ways:

• Artifacts contained in a VM 14/28
• Artifacts contained in a container 10/28

Grid 2 provides more context to Table 2 with details from
reviewer experiences. In general, reviewers seemed to ap-
preciate artifacts that were flexible and understandable, with
minimal setup required.

5. DISCUSSION

This section highlights best practices that prevent the issues
reviewers encountered in Part 3 and result in the beneficial
characteristics of Part 4.

First, an artifact that is a complete snapshot of its de-
pendencies (data, software libraries, and code) is relatively
easy for reviewers to test because setup steps have been
minimized. For example, to test a complete snapshot of an
experiment stored in a container, only two setup steps are
required: (1) download the container image, (2) mount it
and attach a shell.

Further, a complete snapshot is relatively easy to run
remotely where there may be more resources available, for
example in a high-performance cluster or in a cloud environ-
ment. This is because by definition a complete snapshot is
self-contained. In other words, one can move the complete
snapshot easily from place to place instead of manually
setting up dependencies, data, and code in each new location.

It must be noted that authors may have a good reason
to download large dependencies on the fly. If, for example,
a data set is extremely large, storage requirements can be
minimized by fetching and caching parts of the data set as
needed. This may be fine if the fetched content is verifiable,
checked, and always available. But in practice, these best
practices are difficult to check and uphold. A compromise
for authors and reviewers may be to have data packaged
separately. For example, a container image containing a large



Table 1: Types and frequencies of negative comments

Category Type of comment Artifacts with
type of comment

• Environment Not enough resources. Reviewers didn’t have enough physical re-
sources to test the artifact locally in a reasonable amount of time.

10/28

Issues with software dependencies. Reviewers struggled to find and
install the right software dependencies, sometimes preventing them
from setting up and testing the artifact.

4/28

Works in limited environments. Reviewers had difficulty getting
access to proprietary operating systems and running benchmarks
locally.

3/28

• Format Issues with VM or container. Reviewers encountered errors when
they tried to setup VM’s and containers, or the VM’s and containers
slowed down the review process.

5/28

• Content Problems with docs. Reviewers encountered typos in instructions and
missing or unclear instructions.

10/28

Errors in scripts. Reviewers wasted time debugging typos and
unexpected errors in helper scripts.

2/28

Too complicated. Reviewers struggled to complete complicated in-
structions and to test complicated artifacts.

2/28

• Execution Long running tests. Reviewers struggled to complete tests that took
hours or days.

15/28

Issues compiling or running. Reviewers encountered errors when
they tried to compile or run the artifact.

8/28

Ignored errors. Reviewers weren’t confident about artifacts that
emitted errors, even if the results produced were correct.

5/28

Downloads during execution. Reviewers spent a long time running
test cases that downloaded data on the fly. Reviewers were also worried
that such data would not always be available.

2/28

Table 2: Types and frequencies of positive comments

Category Type of comment Artifacts with
type of comment

• Format Self-contained. Reviewers were enthusiastic about artifacts that re-
quired minimal setup and worked seamlessly.

4/28

Lightweight. Reviewers benefited from artifacts that required minimal
storage space. They also appreciated being able to download small
parts of a large the artifact.

1/28

• Content Comprehensive documentation. Reviewers praised clear, easy to
follow documentation that covered most if not all aspects of the
artifact.

4/28



Grid 1: Context for types of negative comments

• Not enough resources. In one case, a
container image was so large that it caused
the reviewer’s machine to run out of inodes.
In another case, the short version of an
experiment (3 hours) ended up taking a
full day. For this artifact, reviewers were
unsure how long to wait before assuming
the artifact wasn’t functional. For the
same artifact, a reviewer also struggled
to produce results when the artifact failed
with an “out of space” error. A different
artifact relied on the network so much that
one reviewer had trouble finishing tests
on a spotty internet connection. In 7/10
of the cases, reviewers only ran a subset
of functionality. In 4/10 cases, reviewers
reported needing to run experiments
for multiple days and for only 2/10 cases
did reviewers report they were able to do so.

• Issues with dependencies. In two
cases, software dependencies were not
precisely documented. Reviewers then
went through a time-consuming process of
trial and error in their attempt to find the
right software to install. In another case,
software dependencies and precise version
numbers were documented but they weren’t
tested ahead of time and they happened
to be wrong. Reviewers therefore could
not setup the artifact properly until the
artifact’s author corrected the mistake. In a
different case, it was unclear to reviewers
how to install dependencies, even though
they were documented.

• Works in limited environments. In
two cases, reviewers tried to extract an
artifact from a VM to set it up locally. Both
of these attempts failed due to problems
with dependencies or the artifact itself. In
another case, reviewers were told to test
an artifact only on a Windows operating
system. Some reviewers did not have access
to this environment and could not test it
this way.

• Issues with a VM or container. In one
case, reviewers struggled with a container
that ran expectionally slow on macOS, due
to how file mounts was implemented on
that platform. In a different case, reviewers
struggled to use a VM that had a small
(4 inch) display. In 3/5 cases, the issues
involved launching VM’s and containers.

• Problems with docs. In 6/10 cases,
reviewers encountered typos; in 5/10 cases,
reviewers noticed that instructions were
missing; and in 2/10 cases, instructions
were present but they were confusing or
unclear. Reviewers were often able to fix
the typos but many struggled with the other
issues.

• Errors in scripts. In one case, a
script containing errors downloaded wrong
software dependencies. Despite frustration,
in all cases reviewers were able to debug
the errors in scripts.

• Too complicated. In one case, an
artifact had so many manual steps that
reviewers inevitably made accidental
mistakes. One reviewer lost so much time
during this process that they didn’t have
time to re-execute the instructions correctly.
In a different case, the complicated structure
of an artifact made running its benchmarks
cumbersome and time consuming.

• Long running tests. In 9/15 cases,
tests and experiments took so long that
reviewers did not have time to completely
test the artifact. No artifact had instructions
to execute long running tests (hours to days
long) in a cluster or cloud environment to
free up resources on the reviewer’s local
machine.

• Issues compiling or running. In 3/8
cases, reviewers encountered compilation
errors. In 6/8 cases, reviewers encountered
errors when they executed experiments and
tests. In 4/8 cases, reviewers encountered
artifact-specific errors that were hard to
debug without a deeper understanding of
the artifact and its dependencies.

• Ignored errors. In one case, two
tests failed but the artifact still emitted
results that matched its paper. Reviewers
then were unsure how to interpret the test
failures and eventually assumed that the
artifact was functional.

• Downloads during execution. In
both cases, resources were downloaded
over the internet. One reviewer noted that
the artifact could stop working after a
few years as online resources are deleted.
In one case, resources were downloaded
whenever a reviewer executed a test case.
This made re-executing test cases with
different parameters a time consuming
process, especially exacerbated by a slow
internet connection.

Grid 2: Context for types of positive comments

• Self-contained. Two reviewers enthusi-
astically thanked authors for providing a
VM. In one case, the reviewer was using a
different operating system than the artifact
required, and in another case, a reviewer
appreciated having access to an integrated
GUI in the VM. Two reviewers commented
on how quick and easy it was to test artifacts
that were encapsulated in Linux containers.
One reviewer was surprised that an artifact
was “completely self-contained and running
flawlessly the first time!”

• Lightweight. One reviewer thanked the
artifact authors for providing a separate link
to just the artifact’s code instead of only
providing a VM or container image. This
allowed the reviewer to easily inspect the
artifact locally. In several cases, reviewers
asked artifact authors to remove unneces-
sary files or to convert Linux VM’s to a
lighter weight format like a Linux container.

• Comprehensive documentation. One re-
viewer praised the artifact’s authors because
the “instructions were clear, easy to follow,
and explored all aspects of the work.” In one
exceptional case, artifact authors even docu-
mented expected errors. In a different case,
reviewers appreciated having a mapping of
artifact code to claims made in the paper.



data set can be downloaded in full if needed, and it can be
served efficiently over a network filesystem for testing. The
two parts, the data package and the code package, would
then constitute the artifact.

Therefore a complete snapshot of an artifact helps to ad-
dress • Issues with dependencies, • Not enough resources,
• Downloads during execution, • Long running tests, and
• Self-contained.

Second, an artifact that is provably tested, for example
with output from a continuous integration system as proof,
is less likely to produce errors for reviewers. This is partly
because setup and execution errors are more obvious to
authors when artifacts are executed in a different environment
than they were developed in. But it also forces authors to
test helper scripts, which sometimes are hastily created. An
added bonus is that if logs from these proofs are given to
reviewers, reviewers can check if a spurious error is cause
for concern.

Therefore a provably tested artifact helps to ad-
dress • Works in limited environments, • Errors in scripts,
• Issues compiling or running, and • Ignored errors.

Third, an artifact that is structured in a standard way is
easier for reviewers to understand and use. For example,
an artifact that has compilation scripts, execution scripts,
data files, and documentation in predictable places can have
simpler, less error-prone documentation. While it is not
beneficial to artifact authors to over-standardize, at minimum,
many commands needed to setup and test an artifact could
be encapsulated in testable scripts and stored in predictable
places.

Therefore a consistently structured artifact helps
to address • Problems with docs, • Too complicated, and
• Comprehensive documentation.

While these themes — complete snapshot, provably
tested, and consistently structured — cover many of the
topics in Parts 3-4, there are important issues that they don’t
address.

First, not all artifact execution tools (e.g. virtual machine
managers, container runtimes) work well on every operating
system and on every physical machine. Furthermore, all
possible setups are unreasonably hard for authors to test.
It is therefore important for artifacts to be formatted using
an open standard so reviewers can use the best, most freely
available tools. Proprietary formats tend to offer users less
choice so it would behoove authors to avoid them. In this
study, it was encouraging to see that 93% of the artifacts we
observed could be run on an open source operating system
(Linux) and could be encapsulated using an open image
format (OVF [7] or OCI [8]).

To summarize the best practices we have highlighted so
far, artifacts are easier to setup, execute, and review if:

• They are a complete snapshot of code, dependencies,
and data

• They are provably tested
• They are consistently structured
• Their environment and format are as transparent and

open as possible

While the first three properties may be to a large degree
achieved by constantly improving guidelines and tools, the
last two depend on the cooperative efforts of software engi-
neering communities. In the next section we discuss ongoing
work to help authors achieve the first three.

6. ONGOING AND FUTURE WORK

Inspired by the the data collected in this study and “war
stories” from researchers, we are experimenting with ways
to encapsulate research demos in Linux containers so they
are easy to test and change. A demo is a complete snap-
shot of a research prototype, containing algorithmic code,
software dependencies, and often a small example data set.
The demos can be executed by a continuous integration
system to provably test their functionality over time, and
they will contain auto-generated documentation from simple
metadata. The main goal of this work is to make research
artifacts easier to use by artifact evaluation committees, by
researchers in academic institutions, and by the public at
large [11]. A side effect of this work is that artifact authors
can use the demo format and tools to easily prepare artifacts.
When our first demos are shared, a followup report will also
be shared describing the approach in greater detail.

A complementary project called Dockstore encapsulates
genomics research code in docker containers [12]. Inspired
by the vast amounts of data required to run genomics anal-
yses, the Dockstore project promotes the distributed storage
and use of genomics data. Furthermore, it allows compatible
encapsulated tools to be linked together, for example, to
create more complex systems. While the Dockstore project
promotes reusing research artifacts in a flexible dataflow-
like model, our work is more focused on making individual
artifacts easy to understand and use on their own.

Also worth noting is the ongoing work of the Journal
of Open Source Software (JOSS) [9], [10], where research
software engineers and the wider scientific community can
receive a citable DOI for high quality research software. This
allows authors to get citation credit for work that may not
be accepted by traditional scientific journals yet still is of
high value to the research community. Moreover, JOSS has
a peer-review process where submitted artifacts are held to
engineering level standards of documentation and testing.

Finally, future work ought to address the preservation of
research artifacts so that accessible, peer-reviewed artifacts
can be used for many years to come. Organizations like
the Software Sustainability Institute [13] and projects like
Software Heritage [14], among others, might collaborate
in preserving not only source code but also peer-reviewed
artifact images, dramatically increasing the chance that an
artifact can be setup and used again.

This effort could be more manageable if artifacts met
certain constraints, for example:

• The artifact was peer-reviewed, for example by JOSS
or by an artifact evaluation committee

• The artifact earned, at minimum, the equivalent of the
ACM’s “available” and “functional” badges



• Its corresponding research paper was published in an
open access journal

These constraints would reward fully open, peer-reviewed
research from paper to artifact. While it is an ambitious
project, we argue that preserving knowledge as important
as creating it.
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